Technical Articles

November 07, 2018

Por Tim O’Neill, Technical Marketing Manager. 

¿Crees que, involucrando a todos tus proveedores, llegarías a la causa de un problema de soldadura intermitente?

En pocas palabras, la última función de una línea de ensamblaje de PCB es crear millones de uniones de soldadura sin error. Esta tarea se complica por la gran cantidad de materiales que se unen durante el ensamblaje, y depende de la calidad de cada terminal de componentes, terminal del PCB (pad) y esfera que se va a soldar. Cuando se descubre un defecto de soldadura, es una práctica común suponer que los materiales de soldadura son la causa, lo que parece lógico, considerando que es un defecto de soldadura. Pero esta suposición a menudo está “fuera de lugar”. Este tipo de escenario regularmente se desarrolla, como se ilustra en un caso reciente presentado a nuestro...

February 22, 2018

Por Tim O’Neill, Technical Marketing Manager. 

¿El proceso de reflujo puede ser modificado “sobre la marcha”?

Uno de los ingenieros de campo en AIM regreso está semana de un viaje a través del país, con un caso acerca de un problema que estaba causando dificultades a un cliente. Finalmente, el problema era relacionado con el diseño y una gran diferencia de temperatura (ΔT), que no lograron dominar con el equipo que se utilizó en producción. Les tomó un día completo de pruebas, para realizar la evaluación final. 

Muchos de los ingenieros y técnicos con los que trabajo, categorizan (desarrollan) el perfilado de reflujo, de la misma forma que realizan ejercicio por las mañanas o la limpieza de sus dientes. Saben que lo necesitan hacer y que los beneficios son significativos, pero...

October 25, 2017

Por Tim O’Neill, Technical Marketing Manager

¿Cuál es la importancia de seleccionar el correcto material para prevenir contaminación electroquímica en la estación de retrabajo?

Una docena de versiones del mismo escenario ocurrieron en el último mes, todas eran relacionadas con los materiales y procesos utilizados en aplicaciones post-producción / retrabajo. Este paso del...

June 28, 2017

By Tim O’Neill, Technical Marketing Manager

With RoHS exemptions set to expire, can SAC305 hang on?

It is not the strongest of the species that survive, nor the most intelligent, but the one most responsive to change.
– Charles Darwin

The final steps of RoHS will be phased in over the next 24 months and once implemented; lead will be virtually eliminated from the solder supply chain for electronic assembly. With the last exemptions applying predominantly to high reliability applications, the materials in use are being scrutinized to determine if they can perform to the mission requirements of high reliability PCB. Concurrent to this material concern, is the unrelenting trend in microelectronics; more functionality and performance in smaller spaces. As circuitry...

March 13, 2017

By Tim O’Neill, Technical Marketing Manager

With RoHS exemptions set to expire, the SMT market might see a host of new solders.

I vividly remember a moment in 1994, sitting in a job interview, trying to conjure an image of the periodic table for the abbreviations for tin (Sn) and lead (Pb). Of course, these weren’t easy guesses because both elements’ abbreviations are derived from their Latin roots: tin from stannum and lead from plumbum. I incorrectly provided my interviewer with the abbreviation for titanium (Ti) and the famously nonexistent unobtainium (Uo). As confused as I was at the time, little did I realize how simple things actually were.

Back then, there was essentially one alloy in use for electronics assembly: Sn63/Pb37. A few...

January 12, 2017

By Tim O’Neill, Technical Marketing Manager

Stop Tweaking the Ground Pad Prints; Start Tweaking the I/O Prints.

Would you believe QFN ground pad voids could be cut by over 50% with a zero-cost, super-simple stencil aperture modification? Not a mod to the ground pad apertures where the voiding is problematic, just to the I/O apertures? Neither did we. That’s why we did some deeper digging into what we are now calling the “AIM I/O” aperture modification before introducing it.

In November’s Tech Tips, we reported a dramatic reduction in voids when QFN I/O pads were left unpasted, and mentioned our technical staff’s observations and ensuing experiments that led us to this new void mitigation technique, but we didn’t tell you exactly what that I/O aperture design was. It’s a simple overprint at...

November 07, 2016

By Tim O’Neill, Technical Marketing Manager

Sometimes the answers to the most tenacious questions are right under your nose.

As I sit in Chicago’s O’Hare Airport having just left another productive and exciting SMTA International trade show, I reflect on what an excellent opportunity this event presents to network and stay current in the world of electronics assembly. If you don’t attend these events regularly, you should. I was fortunate to have the opportunity to attend a number of the technical conference sessions and not only learn what is emerging, but also speak with customers and colleagues on what they see as the most pressing needs of the market.

To sum it up… BTC void reduction. The technical sessions on void reduction I attended were all standing...

August 08, 2016

By Tim O’Neill, Technical Marketing Manager

STENCILS: Coated vs. Uncoated... what’s better for the process?

We’ve been doing a lot of print testing in our lab. In our first set of published results, “The Impact of Reduced Solder Alloy Powder Size on Solder Paste Print Performance1” from IPC/APEX 2016, we revealed a hierarchy of input variables to maximize solder paste transfer efficiency and minimize variation. In that study, we used a fully-optioned stencil as part of the equipment set. In order to tease out the data we were looking for, we could not lose critical information to the noise of stencil-induced variations.

If the stencil in that study were an automobile, it would be a Bentley. It was made by a...

April 21, 2016

By Tim O’Neill, Technical Marketing Manager, Carlos Tafoya and Gustavo Rameriez



From the Apple™ Watch and body cameras for law enforcement to virtual reality hardware and autonomous transportation, the demands and opportunities for electronics to improve our lives are only limited by our imagination. The capability of existing PCB assembly technology needs to advance rapidly to meet the mission profile of these new devices. The demand common to all of these devices is increased functionality in a smaller space. For the solder paste manufacturer, this path inevitably leads to incorporating finer metal powder into solder paste to facilitate ultra-fine pitch printing. In this study, we will evaluate the benefits and implications of finer mesh solder powder on critical aspects of solder paste performance. 

April 13, 2016

By Tim O’Neill, Technical Marketing Manager

Stencil printing is efficient and effective, but it is not without its limitations.

Stencil printing is an efficient and effective way of applying millions of well-controlled solder paste deposits, but it is not without its limitations. Many packages, such as area array and bottom termination components, keep getting smaller, while connectors, shields and other big components remain the same size, or grow even larger. Pushing the limits of stencil printing on either or both ends of the printable size spectrum can present considerable challenges for PCB assemblers.

One way to conquer these challenges is to dispense solder paste. Dispensing is an attractive option because it allows for infinite flexibility - it can produce both very small deposits...

February 17, 2016

By Karl Seelig, Vice President Technology and Tim O’Neill, Technical Marketing Manager

Or what the @#$% is a squircle, and what is it doing on my stencil?

The term “squircle” is a portmanteau, or mashup, of square and circle. It’s a real word, and the shape is also known as a superellipse to supernerds. We jest, but besides having a funny name, the squircle is an effective tool for maximizing solder paste release and overall deposit volume.

A squircle (FIGURE 1) is a square with rounded corners that, when incorporated into stencil aperture designs for small area arrays, provides better print quality than either a square or a circle alone. It brings the best of both worlds to an extremely challenging part of the printing process.

December 10, 2015

By Karl Seelig, Vice President Technology and Tim O’Neill, Technical Marketing Manager 

Paste viscosity can inform why solder performs differently under different conditions. 

Viscosity and thixotropy are not words heard in casual conversation, yet they are very common material characteristics we encounter in our everyday lives.

Viscosity is defined as a fluid’s resistance to flow, but is more commonly referred to as a fluid’s “thickness” (flowing slowly like motor oil) or “thinness” (flowing easily,...

September 29, 2015

By Karl Seelig, Vice President Technology and Tim O’Neill, Technical Marketing Manager

Proper handling and storage controls go a long way toward print quality.

Solder paste is an elaborate mixture of metal powders, acids, thixotropes, solvents and a variety of other chemicals. When combined, the reactions and interactions can be extremely varied and complex. When designing solder paste chemistry, key considerations include not only its inprocess performance but how to maintain the stability of that performance against the rigors of time, temperature fluctuations and usage. 

Stencil printing is arguably the critical process on the assembly line because it lays the foundation for the entire assembly. A quality print does not necessarily preclude...

August 18, 2015

By Karl Seelig, Vice President Technology and Tim O’Neill, Technical Marketing Manager

In Search of the Perfect Solder Paste. Hint, it's a moving target.

Solder paste – that ubiquitous, viscous, sticky blob that is applied as the first step of every SMT assembly process – is a surprisingly complex product. It is composed of two primary constituents: solder powder, which accounts for 85% to 90% by weight or 50% by volume, and flux medium as the balance. As complicated as powder development and manufacturing can be, flux medium is even more so, due to the myriad demands and constraints placed on it.

Imagine you are planning a big party and you decide to make the aptly named Patience Cake (FIGURE 1) – arguably one of the most complicated baked...

June 12, 2015

By Mehran Maalekian, Yuan Xu, Amir Hossein Nobari, Karl Seelig of AIM Metals & Alloys

Comparing Properties of CASTIN™, BABBITT & Alternative Lead-Free Alloys

Abstract.  This paper compares three commercial lead-free solders; CASTIN®, Babbitt and SAC-I and their modified compositions in terms of mechanical and soldering properties. Solders tested are six alloys with different compositions in the range of (major elements): Sn/Cu(0.7-4)/Ag(0-4)/Sb(0.5-8)/Bi(0-3)/Ni(0-0.15). Effects of alloying elements on the thermal behavior (melting and solidification), wetting force, contact angle, spreading, tensile and hardness properties are studied. Based on preliminary results...

May 29, 2015

By Karl Seelig, Vice President Technology and Tim O’Neill, Technical Marketing Manager

A finer type solder paste may solve one problem only to create another.

From Univac to the latest wearable gadget, electronics keep shrinking. As transistors get smaller, so too do their packaging, solder interconnections, and a key ingredient in making those interconnections: solder powder. Often overlooked on miniaturization roadmaps, the ultrafine particles of metal carried in solder paste play a critical role in solder joint formation, and must be optimized for printing and reflow of subminiature solder joints.

The solder powder manufacturing process is very complex and involves atomizing molten alloy and solidifying the tiny droplets while dispersed in...

April 04, 2015

By Karl Seelig, Vice President Technology and Tim O’Neill, Technical Marketing Manager

To err is human; to blame the other vendor is… policy.

Nearly every process engineer has found themselves in this quandary: something goes awry with the process, and the supplier finger-pointing begins immediately. With machines, chemistry, components and PCBs all factoring into the mix, it often appears that a supplier’s first line of response is to deflect responsibility rather than help seek the root cause. Chemistry providers don’t have the luxury of suggesting a few mechanical measurements or a quick check under the hood to rule out our products as the source of problems, so we are accustomed to rolling up our sleeves and helping solve them.


February 02, 2015

By Karl Seelig, Vice President Technology and Tim O’Neill, Technical Marketing Manager

A Tale of Fresh Eyes, Red Herrings and Dirty Tweezers…

We recently received a call from a contract assembler that was fighting solder balls after reflow. They were getting solder balls on one capacitor and tried to address it with profile changes. Sometimes the problem went away, but it always came back. They were also getting blowholes in the same solder joints from time to time.

First, we tried to identify the root cause for the balling problem remotely. The typical questions when confronted with this issue include:

  • On which components are the solder balls occurring?

  • ...
December 01, 2014

By Karl Seelig, Vice President Technology and Tim O’Neill, Technical Marketing Manager

And why waiting until the last process step is a bad idea.

BTCs, or bottom termination components, are a class of package referred to by a variety of acronyms and abbreviations. Different component and packaging companies may use different nomenclature (FIGURE 1), but almost all these components share one common, ugly characteristic: large pads that are prone to solder voiding. By design, these large thermal or ground pads require a defined percentage of contact with the solder and PCB to properly conduct heat and/or electricity. Excess solder voids can impact performance and reliability of the package.

The voiding problem has given both designers and manufacturers heartburn for the...

September 02, 2014

By Karl Seelig, Vice President Technology, Tim O’Neill, Technical Marketing Manager and Mehran Maalekian, R&D Manager

Tin Whisker Study Conclusions.

Silver is a known whisker promoter but small amounts of bismuth mitigate the problem.  Alloy composition has a strong influence on tin whisker production and has proven to either mitigate or exacerbate the propensity for a solder to whisker. In our year-long study of the relationship between alloy composition on tin whisker formation, SAC 305 notoriously produced more and larger whiskers than any of the other alloys tested.

Sn0.6Ag0.6Cu3Bi, labeled “Alloy #69-2” in our test matrix, a tweak on one of the original nine alloys, produced the least and smallest whiskers. It also performed well in the other electronic solder suitability tests such as...