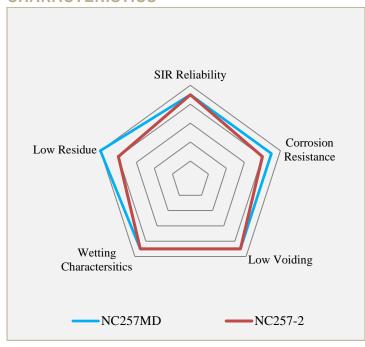


NC257MD NO CLEAN SOLDER PASTE


FEATURES

- Specially Engineered for Mycronic Jet Printers
- Clear Pin-Probe Testable Residue
- Excellent Wetting, Even Leadless Devices
- Reduces Voiding Under Micro-BGAs
- 8-12 Hour Tack Time
- Vapor Phase Compatible
- For Use With Mycronic AG Type Ejector

DESCRIPTION

NC257MD solder paste has been specifically developed for Mycronic Jet Printers. Its unique rheological properties were engineered and validated through extensive testing in collaboration with Mycronic to provide continuous and consistent deposits. NC257MD prolongs ejector life and reduces paste scrap and consumption. The superior wetting ability of NC257MD results in bright, smooth and shiny solder joints and reduced voiding on BGA and BTC devices. NC257MD produces low post reflow flux residues, which remain crystal clear and easily probed even at the elevated temperatures required for lead-free alloys.

CHARACTERISTICS

HANDLING & STORAGE

PARAMETER	TIME	TEMPERATURE
Sealed Frozen	6 Months	<-18°C (< 0°F)
Shelf Life		

Handle exactly as noted for best performance. Allow the solder paste to warm up completely and naturally to ambient temperature prior to use. From < -18°C (< 0°F) - approximately 12 hours. From 0°C to 12°C (32°F-55°F) - approximately 4 hours. After opening, solder paste shelf life is environment and application dependent. Daily replacement with a fresh syringe of paste can prolong ejector life and optimize performance. See AIM's paste handling guidelines for further information. Alloy and storage conditions may affect shelf life. Please refer to NC257MD Certificate of Analysis for product specific information.

CLEANING

Post-Reflow Flux Residue: NC257MD residues can remain on the assembly after reflow and do not require cleaning. Where cleaning is mandated, AIM has worked closely with industry partners to ensure that NC257MD residues can be effectively removed with common defluxing agents. Contact AIM for cleaning compatibility information.

*All information for reference only. Not to be used as incoming product specifications or for process design. Consult Certificate of Analysis for product specific information.

DISCLAIMER The information contained herein is based on data considered accurate and is offered at no charge. Product information is based upon the assumption of proper handling and operating conditions. Liability is expressly disclaimed for any loss or injury arising out of the use of this information or the use of any materials designated. Please refer to http://www.aimsolder.com/terms-conditions to review AIM's terms and conditions.

TECHNICAL DATA SHEET

REFLOW PROFILE

Detailed profile information may be found at http://www.aimsolder.com/reflow-profile-supplements. Contact AIM for additional information.

TEST DATA SUMMARY

NAME	TEST METHOD		RESULTS
IPC Flux Classification	J-STD-004	ROL0	
IPC Flux Classification	J-STD-004B 3.3.1		ROL1
NAME	TEST METHOD	TYPICAL RESULTS	IMAGE
Copper Mirror	J-STD-004B 3.4.1.1 IPC-TM-650 2.3.32	LOW	
Corrosion	J-STD-004B 3.4.1.2 IPC-TM-650 2.6.15	PASS	
Quantitative Halides	J-STD-004B 3.4.1.3 IPC-TM-650 2.3.28.1	L1	
Qualitative Halides, Silver Chromate	J-STD-004B 3.5.1.1 IPC-TM-650 2.3.33	PASS	
Qualitative Halides, Fluoride Spot	J-STD-004B 3.5.1.2 IPC-TM-650 2.3.35.1	No Fluoride	
Surface Insulation Resistance	J-STD-004B 3.4.1.4 IPC-TM-650 2.6.3.7	PASS	13 12 11 10 6 6 7 7 6 5 0 1 2 3 4 5 6 7 Time, day
Electrochemical Migration	J-STD-004B 3.4.1.5 IPC-TM-650 2.6.14.1	PASS	
Flux Solids, Nonvolatile Determination	J-STD-004B 3.4.2.1 IPC-TM-650 2.3.34	86.9 Typical	
Acid Value Determination	J-STD-004B 3.4.2.2 IPC-TM-650 2.3.13	149 mg KOH/ g flux Typical	

^{*}All information for reference only. Not to be used as incoming product specifications or for process design. Consult Certificate of Analysis for product specific information.

DISCLAIMER The information contained herein is based on data considered accurate and is offered at no charge. Product information is based upon the assumption of proper handling and operating conditions. Liability is expressly disclaimed for any loss or injury arising out of the use of this information or the use of any materials designated. Please refer to http://www.aimsolder.com/terms-conditions to review AIM's terms and conditions.

TECHNICAL DATA SHEET

NAME	TEST METHOD	TYPICAL RESULTS	IMAGE
Flux Specific Gravity Determination	J-STD-004B 3.4.2.3 ASTM D-1298	3.39 Typical	
Viscosity	J-STD-005A 3.5.1 IPC-TM-650 2.4.34	450-550 Kcps Typical	
Visual	J-STD-004B 3.4.2.5	Gray, Smooth, Creamy	
Slump	J-STD-005A 3.6 IPC-TM-650 2.4.35	PASS	
Solder Ball	J-STD-005A 3.7 IPC-TM-650 2.4.43	PASS	
Tack	J-STD-005A 3.8 IPC-TM-650 2.4.44	32.8 gf Typical	
Wetting	J-STD-005A 3.9 IPC-TM-650 2.4.45	PASS	

DISCLAIMER The information contained herein is based on data considered accurate and is offered at no charge. Product information is based upon the assumption of proper handling and operating conditions. Liability is expressly disclaimed for any loss or injury arising out of the use of this information or the use of any materials designated. Please refer to http://www.aimsolder.com/terms-conditions to review AIM's terms and conditions.

^{*}All information for reference only. Not to be used as incoming product specifications or for process design. Consult Certificate of Analysis for product specific information.