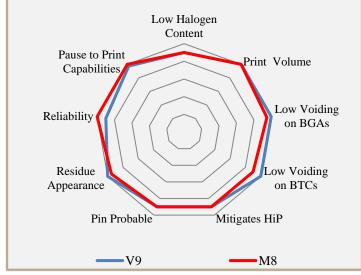


V9 NO CLEAN SOLDER PASTE


FEATURES

- Low-Voiding: as low as 1% on BGA and <5% on BTCs</p>
- Capable of Consistent Printing with Area Ratio < 0.66
- High Reliability (SIR)
- Drop-in for M8
- REACH and RoHS* Compliant
- Available in SAC305 T4

CHARACTERISTICS

DESCRIPTION

V9 Low-Voiding No Clean solder paste is formulated for near-zero voiding on BGA, BTC and LED soldering applications. Significant void reduction achievable on all surface finishes including ENIG, ImSn and OSP. V9 exhibits stable print performance on fine feature devices over 12 hours. V9 post-process residue is easily pin-probed and has high SIR values.

*Lead-free alloys.

HANDLING & STORAGE

PARAMETER	TIME	TEMPERATURE
Sealed Refrigerated	6 Months	0°C-12°C (32°F-55°F)
Shelf Life		
Sealed Unrefrigerated	1 Month	< 25°C (< 77°F)
Shelf Life		

Do not add used paste to unused paste. Store used paste separately; keep unused paste tightly sealed with internal plug or end cap in place. After opening, solder paste shelf life is environment and application dependent. See AIM's paste handling guidelines for further information. Alloy and storage conditions may affect shelf life. Please refer to V9 Certificate of Analysis for product specific information.

CLEANING

Pre-Reflow: AIM DJAW-10 effectively removes V9 solder paste from stencils while in process. DJAW-10 can be hand applied or used in under stencil wipe equipment. DJAW-10 will not dry V9 and will enhance transfer properties. Do not over-apply DJAW-10. Do not apply DJAW-10 to stencil topside. Isopropanol (IPA) is not recommended in process, but may be used as a final stencil rinse.

Post-Reflow Flux Residue: V9 residues can remain on the assembly after reflow and do not require cleaning. Where cleaning is mandated, AIM has worked closely with industry partners to ensure that V9 residues can be effectively removed with common defluxing agents. Contact AIM for cleaning compatibility information.

*All information for reference only. Not to be used as incoming product specifications or for process design. Consult Certificate of Analysis for product specific information.

REFLOW PROFILE

Detailed profile information may be found at <u>http://www.aimsolder.com/reflow-profile-supplements</u>. Contact AIM for additional information.

PRINTING

RECOMMENDED INITIAL PRINTER SETTINGS - DEPENDENT ON PCB AND PAD DESIGN		
Parameter	Recommended Initial Settings	
Squeegee Pressure	0.4 - 0.7kg/25mm	
Squeegee Speed	13 – 152 mm/second	
Snap-off Distance	On Contact 0.00 mm	
PCB Separation Distance	0.75 - 2.0 mm	
PCB Separation Speed	3 - 20 mm/second	

TEST DATA SUMMARY

NAME	TEST METHOD		RESULTS
IPC Flux Classification	J-STD-004 3.3	ROL0	
IPC Flux Classification	J-STD-004B 3.3	ROL1	
NAME	TEST METHOD	TYPICAL RESULTS	IMAGE
Copper Mirror	J-STD-004B 3.4.1.1 IPC-TM-650 2.3.32	LOW	V9 P-14816 CONTROL
Corrosion	J-STD-004B 3.4.1.2 IPC-TM-650 2.6.15	PASS	Before After
Quantitative Halides	J-STD-004B 3.4.1.3 IPC-TM-650 2.3.28.1	Br: 0.44% Cl: 0.0% Typical	
Qualitative Halides, Silver Chromate	J-STD-004B 3.5.1.1 IPC-TM-650 2.3.33	PASS	
Qualitative Halides, Fluoride Spot	J-STD-004B 3.5.1.2 IPC-TM-650 2.3.35.1	PASS	

*All information for reference only. Not to be used as incoming product specifications or for process design. Consult Certificate of Analysis for product specific information.

TECHNICAL DATA SHEET

NAME	TEST METHO D	TYPICAL RESULTS	IMAGE	
Surface Insulation Resistance	J-STD- 004B 3.4.1.4 IPC-TM- 650 2.6.3.7	All measurements on test patterns exceed 100 MΩ	13.00 12.00 10.00 10.00 9.00 8.00 7.00 6.00 5.00 4.00 3.00 0 1 2 3 4 5 6 7 Time, day 10 9 SAC305 1A 10 9 SAC305 1B 10 9 SAC305	
Flux Solids, Nonvolatile Determination	J-STD- 004B 3.4.2.1 IPC-TM- 650 2.3.34	94.14% Typical		
Acid Value Determination	J-STD- 004B 3.4.2.2 IPC-TM- 650 2.3.13	139.03 mg KOH/g Typical		
Viscosity (Malcom)	J-STD- 005A 3.5.1 IPC-TM- 650 2.4.34	130-200 Pa·s Typical		
Visual	J-STD- 004B 3.4.2.5	PASS		
Slump	J-STD- 005A 3.6 IPC-TM- 650 2.4.35	PASS		

*All information for reference only. Not to be used as incoming product specifications or for process design. Consult Certificate of Analysis for product specific information.

TECHNICAL DATA SHEET

NAME	TEST METHOD	TYPICAL RESULTS	IMAGE
Spread Test	J-STD- 004B 3.7.2 IPC-TM- 650 2.4.46	PASS	
Solder Ball	J-STD- 005A 3.7 IPC-TM- 650 2.4.43	PASS	15 min 4 hrs
Tack	J-STD- 005A 3.8 IPC-TM- 650 2.4.44	36.1 gf Time 0 Typical	100 100 100 100 100 100 100 100
Tack	JIS Z 3284 Annex 9	82.5 gf Time 0 Typical	JIS SAC305 V9 88.5T4

*All information for reference only. Not to be used as incoming product specifications or for process design. Consult Certificate of Analysis for product specific information.