

NC273LT NO CLEAN SOLDER PASTE

FEATURES

- Designed for Low Temperature Applications
- RoHS Compliant
- Improved Wetting for Bismuth Alloys
- Minimizes Solder Balling
- >8 Hour Stencil Life
- Halogen Free

DESCRIPTION

The revolutionary activator system in AIM's NC273LT low temperature solder paste improves the wetting performance of bismuth alloys to RoHS compliant plating and surface finishes. NC273LT provides long stencil life, excellent transfer efficiencies and minimizes solder balling common to high bismuth alloys. When thermal exposure during the assembly process is a limitation, NC273LT is an excellent RoHS compliant replacement. Bismuth bearing solder pastes reduce peak reflow temperature requirements to as low as 170°C-185°C (338°F-365°F). As with any bismuth containing alloy the assembly must be completely lead-free.

CHARACTERISTICS

HANDLING & STORAGE

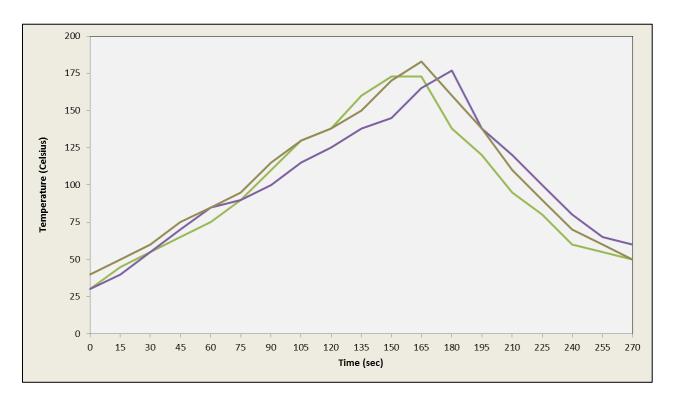
PARAMETER	TIME	TEMPERATURE
Sealed Frozen Shelf	6	< 0°C (22°E)
Life	Months	<0°C (32°F)
Sealed Refrigerated	4	0°C-12°C (32°F-55°F)
Shelf Life	Months	0 C-12 C (32 F-33 F)
Sealed Unrefrigerated	2	< 25°C (< 77°E)
Shelf Life	Weeks	< 25°C (< 77°F)

Do not add used paste to unused paste. Store used paste separately; keep unused paste tightly sealed with internal plug or end cap in place. After opening, solder paste shelf life is environment and application dependent. See AIM's paste handling guidelines for further information. Alloy and storage conditions may affect shelf life. Please refer to NC273LT Certificate of Analysis for product specific information.

CLEANING

Pre-Reflow: AIM DJAW-10 effectively removes NC273LT solder paste from stencils while in process. DJAW-10 can be hand applied or used in under stencil wipe equipment. DJAW-10 will not dry NC273LT and will enhance transfer properties. Do not over-apply DJAW-10. Do not apply DJAW-10 to stencil topside. Isopropanol (IPA) is not recommended in process, but may be used as a final stencil rinse.

Post-Reflow Flux Residue: NC273LT residues can remain on the assembly after reflow and do not require cleaning. Where cleaning is mandated, AIM has worked closely with industry partners to ensure that NC273LT residues can be effectively removed with common defluxing agents. Contact AIM for cleaning compatibility information.


*All information for reference only. Not to be used as incoming product specifications or for process design. Consult Certificate of Analysis for product specific information.

DISCLAIMER The information contained herein is based on data considered accurate and is offered at no charge. Product information is based upon the assumption of proper handling and operating conditions. Liability is expressly disclaimed for any loss or injury arising out of the use of this information or the use of any materials designated. Please refer to http://www.aimsolder.com/terms-conditions to review AIM's terms and conditions.

REFLOW PROFILE

The shaded area below indicates the profile process window, your profile may differ. Component limitations, oven efficiency, board size/mass, component type and density will influence the optimized reflow profile. These recommendations are guidelines. Contact AIM for profiling assistance.

RATE OF RISE 1-3° C/SEC MAX	RAMP TO 100° C (212° F)	PROGRESS THROUGH 100° C-140° C (212° F-284° F)	TO PEAK TEMP 170° C-185° C (338° F-365° F)	TIME ABOVE 138° C (280° F)	COOLDOWN ≤ 4 ° C/SEC	TIME TO SPIKE
	≤ 75 Sec	30-60 Sec	45-75 Sec	50-80 Sec	45± 15 Sec	2.75-3.5 Min

PRINTING

RECOMMENDED INITIAL PRINTER SETTINGS - DEPENDENT ON PCB AND PAD DESIGN		
Parameter	Recommended Initial Settings	
Squeegee Pressure	0.9 -1.5 lbs/inch of blade	
Squeegee Speed	0.5 - 6 inches/second	
Snap-off Distance	On Contact 0.00 mm	
PCB Separation Distance	0.75 - 2.0 mm	
PCB Separation Speed	3 - 20 mm/second	

^{*}All information for reference only. Not to be used as incoming product specifications or for process design. Consult Certificate of Analysis for product specific information.

DISCLAIMER The information contained herein is based on data considered accurate and is offered at no charge. Product information is based upon the assumption of proper handling and operating conditions. Liability is expressly disclaimed for any loss or injury arising out of the use of this information or the use of any materials designated. Please refer to http://www.aimsolder.com/terms-conditions to review AIM's terms and conditions.

TECHNICAL DATA SHEET

TEST DATA SUMMARY

NAME	TEST METHOD	RESULTS		
IPC Flux Classification	J-STD-004 3.2.3.1	ROL0		
IPC Flux Classification	J-STD-004B 3.3.1.2.1	ROL1		
NAME	TEST METHOD	TYPICAL RESULTS	IMAGE	
Copper Mirror	J-STD-004B 3.4.1.1 IPC-TM-650 2.3.32	LOW	50 274 snitubité GOLTROL	
Corrosion	J-STD-004B 3.4.1.2 IPC-TM-650 2.6.15	PASS	Before After	
Quantitative Halides	J-STD-004B 3.4.1.3 IPC-TM-650 2.3.28.1	Br: 0.23% Cl: 0.0% Typical		
Halogen Content	EN14582	<900ppm Br/Cl <1500ppm Combined	Halogen Free	
Qualitative Halides, Silver Chromate	J-STD-004B 3.5.1.1 IPC-TM-650 2.3.33	PASS		
Qualitative Halides, Fluoride Spot	J-STD-004B 3.5.1.2 IPC-TM-650 2.3.35.1	No Fluoride		
Surface Insulation Resistance	J-STD-004B 3.4.1.4 IPC-TM-650 2.6.3.7	PASS		
Flux Solids, Nonvolatile Determination	J-STD-004B 3.4.2.1 IPC-TM-650 2.3.34	3.17 Typical		
Acid Value Determination	J-STD-004B 3.4.2.2 IPC-TM-650 2.3.13	159.4 mg KOH/ g flux		
Flux Specific Gravity Determination	J-STD-004B 3.4.2.3 ASTM D-1298	0.98 Typical		

DISCLAIMER The information contained herein is based on data considered accurate and is offered at no charge. Product information is based upon the assumption of proper handling and operating conditions. Liability is expressly disclaimed for any loss or injury arising out of the use of this information or the use of any materials designated. Please refer to http://www.aimsolder.com/terms-conditions to review AIM's terms and conditions.

^{*}All information for reference only. Not to be used as incoming product specifications or for process design. Consult Certificate of Analysis for product specific information.

TECHNICAL DATA SHEET

NAME	TEST METHOD	TYPICAL RESULTS	IMAGE
Viscosity	J-STD-005A 3.5.1 IPC-TM-650 2.4.34	Print Formula: 750kcps Typical Dispense Formula: 400kcps Typical	
Visual	J-STD-004B 3.4.2.5	Gray, Smooth, Creamy	
Slump	J-STD-005A 3.6 IPC-TM-650 2.4.35	PASS	
Solder Ball	J-STD-005A 3.7 IPC-TM-650 2.4.43	PASS	
Tack	J-STD-005A 3.8 IPC-TM-650 2.4.44	55.3gf Typical	273LT Sn42/Bi58 200.00 50.00 100.00 T0 T2 T4 T6 T8 Time(hours)
Wetting	J-STD-005A 3.9 IPC-TM-650 2.4.45	PASS	

DISCLAIMER The information contained herein is based on data considered accurate and is offered at no charge. Product information is based upon the assumption of proper handling and operating conditions. Liability is expressly disclaimed for any loss or injury arising out of the use of this information or the use of any materials designated. Please refer to http://www.aimsolder.com/terms-conditions to review AlM's terms and conditions.

^{*}All information for reference only. Not to be used as incoming product specifications or for process design. Consult Certificate of Analysis for product specific information.