NC256
Sn62 & Sn63

No-Clean Dipping Solder Paste

Features:
- Engineered for Dipping, Pin Transfer or Roller Transfer
- Stable viscosity and tack for consistent volume transfer over time
- Suitable for PoP Assembly/Sphere Attach
- Reduces Voiding Under Micro-BGAs

Description:
NC256 is a type 5 mesh (25um) no-clean solder paste designed for pin transfer, roller transfer, dispensing and dipping applications. NC256 does not string or tail and separates cleanly for uniform transfer from site to site. NC256 has been proven to offer excellent activity and wetting characteristics, superior slump resistance and has shown to reduce voiding on BGAs. NC256 is formulated for long open and abandon time in facilities where the environmental control is not optimal.

Typical Application:
Standard packaging for NC256 Dipping Flux is EFD 10cc syringes. It can be used with either linear or rotary style controlled volume dipping equipment, pin transfer or dispensed.
When dipping BGA sphere; form a uniform thickness of paste equal to half the thickness of the ball diameter. Dip the BGA into the paste and hold it for at least 0.9 seconds to ensure complete adhesion and transfer to the sphere.

Reflow Profile:
Low Thermal Density and High Thermal Density profiles are depicted below; both can be used in ramp-spike or ramp-soak-spike applications, and they each have similar peak reflow temperatures. The two profiles differ in where they reach their respective peak temperatures, as well as the time above liquidus (TAL). The shorter profile of the two would apply to smaller assemblies, whereas the longer profile would apply to larger assemblies, such as backplanes or high-density boards. Oven efficiency, board size/mass, component type and density all influence the final profile for a given assembly. These profiles are guidelines for reference only. Processing boards with thermal-couples attached is recommended to optimize the process.

<table>
<thead>
<tr>
<th>RATE OF RISE 1.5-2°C / SEC MAX</th>
<th>RAMP TO 150°C (302°F)</th>
<th>PROGRESS THROUGH 150°C-170°C (302°F-338°F)</th>
<th>TO PEAK TEMP 220°C-210°C (428°F-410°F)</th>
<th>TIME ABOVE 183°C (361°F)</th>
<th>COOLDOWN ≤ 4 °C / SEC</th>
<th>PROFILE LENGTH AMBIENT TO COOL DOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Profiles</td>
<td>≤ 60 Sec</td>
<td>15-45 Sec</td>
<td>45-75 Sec</td>
<td>45-60 Sec</td>
<td>45± 15 Sec</td>
<td>2.75-3.75 Min</td>
</tr>
<tr>
<td>Long Profiles</td>
<td>≤ 90 Sec</td>
<td>60-90 Sec</td>
<td>45-60 Sec</td>
<td>45-75 Sec</td>
<td>45± 15 Sec</td>
<td>4.0-5.0 Min</td>
</tr>
</tbody>
</table>

* THE RECOMMENDED REFLOW PROFILE FOR NC256 IS PROVIDED AS A GUIDELINE. OPTIMAL PROFILE MAY DIFFER DUE TO OVEN TYPE, ASSEMBLY LAYOUT, OR OTHER PROCESS VARIABLES. CONTACT AIM TECHNICAL SUPPORT IF YOU REQUIRE ADDITIONAL PROFILING ASSISTANCE.
Cleaning:
- NC256 can be cleaned if necessary with saponified water or an appropriate solvent cleaner.
- Please refer to the AIM cleaner matrix for a list of compatible cleaning materials.

Handling and Storage:
- NC256 has a refrigerated shelf life of 1 year at 4°C - 12°C (40°F - 55°F).
- Allow the solder paste to warm up completely and naturally to ambient temperature (8 hrs.) prior to breaking the seal for use.
- Mix the product lightly and thoroughly (1-2 mins. max) to ensure even distribution of any separated material.
- Do not store new and used paste in the same container, and reseal any opened containers while not in use.
- Replace the internal plug and cap of the 500 gram jars to ensure the best possible seal.

Physical Properties:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Gray, Smooth, Creamy</td>
</tr>
<tr>
<td>Alloy</td>
<td>Sn/Pb</td>
</tr>
<tr>
<td>Melting Point</td>
<td>183°C</td>
</tr>
<tr>
<td>Particle Size</td>
<td>T5</td>
</tr>
<tr>
<td>General Metal Loading</td>
<td>80%</td>
</tr>
<tr>
<td>Viscosity</td>
<td>Dispense</td>
</tr>
<tr>
<td>Packaging</td>
<td>Available in all industry standard packaging.</td>
</tr>
</tbody>
</table>

Classification:

<table>
<thead>
<tr>
<th>PRODUCT NAME</th>
<th>IPC CLASSIFICATION to J-STD-004</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC256</td>
<td>ROLO</td>
</tr>
</tbody>
</table>

Surface Insulation Resistance:

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>PROPERTY</th>
<th>PASS-FAIL CRITERIA</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC-TM-650 method 2.6.3.3. §5.5.1</td>
<td>Control coupons</td>
<td>>1E9 Ω at 96 and 168 h</td>
<td>Pass</td>
</tr>
<tr>
<td>J-STD-004 §3.2.4.5.1</td>
<td>Sample coupons</td>
<td>>1E8 Ω at 96 and 168 h</td>
<td>Pass</td>
</tr>
<tr>
<td>IPC-TM-650 method 2.6.3.3. §5.5.2</td>
<td>Post-test visual inspection</td>
<td>No corrosion</td>
<td>Pass</td>
</tr>
</tbody>
</table>

The result of the qualification test indicates that the AIM NC 256 paste flux complies with the requirements of IPC TM-650, Method 2.6.3.3 for Surface Insulation Resistance.