Technical Articles

January 06, 2014

By Karl Seelig, Vice President Technology and Tim O’Neill, Technical Marketing Manager

Sn/Cu/Ni soldering performance at low temperatures.

Nickel-modified tin-copper solder, known commercially as Sn100C®, is a leading lead-free alloy for PTH soldering, rework and hot air leveled PCB final finishes. Because it contains no silver, it is much more economical than SAC alloys containing 1, 3 or even 4 percent of the precious metal, and it produces smooth, shiny, easy-to-inspect solder joints. Why has it not gained major acceptance as an SMT alloy? In large part, fear. Fear of full compatibility with SAC reflow processes.

SnCuNi melts at 227°C. SAC305 begins to melt at 217°C, reaching its fully liquid state at...

October 01, 2013

By Karl Seelig, Vice President Technology, Tim O’Neill, Technical Marketing Manager, Kevin Pigeon and Mehran Maaleckian

Abstract. Low-silver and no-silver lead-free PCB solder alloys represent substantial cost savings over SAC alloys that contain 3% silver. Many wave solder operations use silver-free alloys for through hole soldering, and SMT operations are also beginning to adopt the alloy for surface mount soldering.

This paper reviews two case studies that test Ni-modified SnCu solder paste on mixed technology circuit assemblies which currently use SAC305 in production. The major differentiator between the two cases is the reflow profile: In one case,...

September 20, 2013

By Karl Seelig, Vice President Technology and Tim O’Neill, Technical Marketing Manager

Every seasoned SMT process engineer has at least one nightmare story about bad rework chemistry. Whether it’s the wrong flux sneaking into the operation, underprocessed flux remaining on the board, or improper residue removal, they all risk the same inglorious fate: field failure. While rework operators and process engineers rarely get a glimpse of the long-term damage of inappropriate materials or processes, the Failure Analysis engineers see it all. They report that the vast majority of solder-related issues are on reworked solder joints, and the lion’s share of those is due to the rework chemistry.

How does the wrong flux work its way into rework? Simple human...

January 11, 2013

By Karl Seelig, Vice President Technology and Tim O’Neill, Technical Marketing Manager

Introduction. As the proliferation of modern day electronics continues to drive miniaturization and functionality, electronic designers/assemblers face the issue of environmental exposure and uncommon applications never previously contemplated. 

This reality, coupled with the goal of reducing the environmental and health implications of the production and disposal of these devices, has forced manufacturers to reconsider the materials used in production.

Furthermore, the need to increase package density and ...

October 27, 2012

By Karl Seelig, Vice President Technology 

Abstract.  In an effort to reduce volatile organic compound (VOC) emissions within our environment, policymakers have encouraged and/or mandated that electronics manufacturers change from alcohol-based VOC-containing fluxes to water-based VOC-free flux alternatives. As a result, the use of VOC-free fluxes is growing throughout North America, Asia and Europe.

The purpose of this study is to explain several factors relating to the use of a VOC-free flux in the soldering process and their impact on testing and product reliability. These factors include; the effect of varying...

January 06, 2012

By Karl Seelig, Vice President Technology

Abstract.  When lead-free solders were first introduced to the electronics industry in the early 1990’s, the tin-silver alloy composed of Sn96.5/3.5Ag was the first investigated. The most obvious difference from the industry standard was the substantially higher melting temperature of 221°C versus 183°C (Sn63/Pb37). 

Although Sn/Ag had been used extensively in hybrid electronics, concerns over silver migration and silver creep drove the industry to investigate Sn/...

September 30, 2011

By Karl Seelig, Vice President Technology and Kevin Pigeon, Senior Applications Manager

Introduction.  Over the last several years, the electronics assembly industry has witnessed a seismic shift toward component miniaturization. Consumer demands for more functionality in smaller packages have motivated OEMs and Contract Manufacturers to engage in new and innovative technologies. As technological advances usher in a more compact design, a decrease in available board space and more densely populated PCB’s have become increasingly common. In response to these demands, the industry has witnessed a proliferation of Quad Flat No Leads (QFN) packages. The goal of this study is to identify the advantages and challenges that the QFN package brings to the electronics assembly process. This...

April 21, 2010

 

Solder is a combination of metals that form an alloy with a melting point lower than any of the individual combined elements. In the process of alloying, the metals are added and melted together and then cooled to a predetermined point above the melting point of the alloy. In the case of electronic-grade tin-lead (Sn63/Pb37) bar, this would be a point above 183°C (361°F) and for a leadfree alloy such as SAC305 (Sn96.5/Ag3.0/Cu0.5) it would be a point above 217-219°C (423-426°F). When an alloy is melted, the surface of the alloy is exposed to air. This interaction of the air on the alloy surface forms an oxide layer called dross. The density of the dross and the alloy are very similar, which causes a slow separation of the two. Typically, dross is not related to impurities but is more related to oxidation rates (although some impurities such as aluminum (Al) and zinc (Zn) do increase dross rates due to their...

December 01, 2009

By Karl Seelig, Vice President Technology and David SuraskiExecutive Vice President 

Abstract.  Since “nothing solders like solder”, HAL (Hot Air Leveling) will continue to hold a significant place in the surface finishing industry. Furthermore, the wave soldering process will continue to be a viable means of electronics assembly. However, as automatic soldering processes using lead-free alloys have become increasingly prevalent, questions have arisen about copper dissolution into these alloys.                 

...

November 11, 2009

By Karl Seelig, Vice President Technology and David SuraskiExecutive Vice President 

Abstract.  As the electronics industry begins to focus upon the tin-silver-copper family of alloys as a viable replacement for tin-lead solders, research needs to be done to determine if any particular alloy is best suited for the broadest range of applications. The tin-silver-copper family of alloys has earned a great deal of positive response from various industry consortia and organizations in recent years and the majority of manufacturers plan on implementing one of these alloys. However, as there are several different alloy formulations within the tin-silver-...

November 11, 2009

 

Discussion.  As lead-free wave soldering becomes increasingly prevalent, questions have arisen about copper dissolution into lead-free alloys. Concerns have arisen over the use of alloys that may require more solder pot maintenance due to their high copper dissolution rates. 

The first part of this study was performed to determine if there is any significant difference between Sn/Ag/Cu alloys. The study compared Sn/Ag3/Cu0.5 (LF218) to Sn/Ag2.5/Cu0.8/Sb0.5 (CASTIN). The purpose was to determine if at wave soldering temperatures one alloy will absorb less copper than the other alloy.

Test Procedure.  Two pots of each alloy holding approximately 500 grams of metal were heated to 530°F (276°C). Copper strips were weighed, fluxed and...

November 11, 2009

By Karl Seelig, Vice President Technology and David SuraskiExecutive Vice President 

Abstract. To successfully achieve lead-free electronics assembly, each participant in the manufacturing process, from purchasing to engineering to maintenance to Quality/Inspection, must have a solid understanding of the changes required of them. This pertains to considerations regarding design, components, PWBs, solder alloys, fluxe s, printing, reflow, wave soldering, rework, cleaning, equipment wear & tear and inspection.

Introduction.  With the WEEE and RoHS Directive in Europe (in its most recent revision) potentially outlawing...

November 11, 2009

Written By Karl Seelig, Vice President Technology

More complicated electronics will require the increased use of specialty solders. Specialty solders, such as indium alloys, offer advantages for gold soldering, step soldering and fatigue resistance.

Indium/Lead Solders on Gold.  Because they do not leach or dissolve gold as readily as tin/lead solders, indium/lead solders are recommended for soldering to gold.  As seen in fig. 1, the phase diagrams of tin/gold shows that tin dissolves approximately 18 percent by weight of gold at soldering temperatures of 225-250°C.1   Under the same conditions the indium/gold phase diagram shows dissolution of only 2 to 4 percent of gold in indium.  Thus, with a substantial reduction in the dissolution of gold, less...

November 11, 2009

Head-in-Pillow (HiP) solder joints have become a more prevalent defect as the industry continues to migrate to more lead-free assemblies. This defect occurs when an electronic and mechanical bond is not made between BGA solder spheres and the solder paste during reflow. Perhaps a larger problem may be that this defect can make it through both x-ray inspection and in-circuit testing undetected, only to surface in the field as the result of thermal and mechanical stress. Also complicating the situation are changes in solder sphere to low silver alloys with or without dopants for improved shock resistance. New surface oxides may be more difficult for current solder paste technologies to overcome and facilitate reliable solder joint formation.

November 11, 2009

By Karl Seelig, Vice President Technology

The increased interest in halogen-free assemblies is a result of Non-Government Organizations (NGOs) exerting pressure on electronic equipment manufacturers to eliminate halogens. The NGOs primary focus is on resolving global environmental issues and concerns. As a result of an increase in the enormous “e-waste” dump sites that have begun showing up around the world, NGOs are pushing consumer electronic manufacturers to ban halogen-containing material in order to produce “green” products. Not only are these sites enormous, but the recycling methods are archaic and sometimes even illegal. This stockpiling and dumping has created growing political and environmental issues. In order to deal with this issue, the question of why halogens are a focal point must be addressed.

...

November 01, 2009

Written By David SuraskiExecutive Vice President 

Abstract.  Despite much research and discussion on the subject of reflow profiling, many questions and a good deal of confusion still exist. What is clear is that the pains often associated with profiling can be reduced if there is a strong understanding of the variables that can be encountered during the reflow process, as well as the metallurgical dynamics of the soldering process. This paper shall provide a brief outline of the reflow profile in general, with specific emphasis placed...

November 06, 2008

Abstract.  SMT printing will require reexamination and process adjustment when lead-free soldering is implemented. If a high quality solder paste is used and standard rules for SMT printing are followed, consistent stencil life, aperture release, print definition, high-speed print capabilities and print repeatability may be expected.

Introduction.  As compared to tin-lead solder pastes, lead-free pastes should exhibit similar features on the stencil and many equipment set points should transition well. However, implementation of lead-free solder paste does necessitate some adjustment, as well as providing an opportunity to review and fine-tune several key printing parameters.

Many manufacturers currently use reduced aperture-to-pad ratios to prevent bridging and solder beading. Due to...

June 01, 2005

By Karl Seelig, Vice President Technology

When converting to lead-free wave soldering, several important business decisions need to be made. The first decision pertains to the wave solder pot. Wave solder pots designed specifically for lead-free soldering are resistant to tin corrosion, contain higher-grade stainless steal components, and typically contain lightweight titanium hardware such as nuts and bolts designed to float rather than sink if dropped in the solder pot. It is well understood that Sn-Ag-Cu alloys are aggressive toward the materials found in many older wave solder machines. If implementing a Sn-Ag-Cu alloy for wave...

Pages