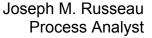


Halide Determination of NC258-T754 Solder Paste

Purchase Order #: 2010-3353

PAL Report Number: 1119-026 Data Only

AIM Solder


9100 Henri Bourassa E. Montreal, QC Canada H1E 2S4

Josette Pierre Research Development Dept.

Phone: (514) 494-2000, ext.5662 Email: jpierre@aimsolder.com

Date: September 25, 2010

Approved By:

Objective

The client desired to evaluate the halide content of one solder paste using ion chromatography per IPC-TM-650, method 2.3.28.1.

Sample Identification:

1119-026-01: NC258-T754 (96515)

Photo Documentation:

Paste sample sent by the client

Equipment and Materials Used:

- Dionex ICS2500 Ion Chromatograph with Chromeleon software
- 18 Megohm-cm Deionized Water
- NIST Traceable Anion Standards (PAL Lot #: PAL-AN5-183)
- Clean Monoject 3cc Syringes
- Omni-Solv 99.9% HPLC Grade Isopropanol (PAL Lot #: PAL-EX-1033)
- 500 Series Kapak[®] 4mm Heat-sealable pouches
- Precision[®] High Temperature Circulating Water-bath
- Clean powder-free Vinyl Gloves
- Dionex AS14 analytical column/AG14 guard column/ASRS Self-Regenerating Suppressor
- 4.5 mM Sodium Carbonate / 1.5mM Sodium Bicarbonate Eluent (Lot #: AN-EL-1096)

Project: 1119-026 Page 2 of 4 Issued: September 25, 2010

Ion Chromatography Procedure:

- 1. Approximately 1 gram of the paste sample was weighed and placed into a clean Kapak heat-sealable pouch.
- 2. Fifty milliliters (50mL) of 10% isopropanol and 90% deionized water was added to the Kapak pouch. The Kapak pouch was then heat-sealed.
- 3. The Kapak pouch was placed into an 80°C water bath for sixteen hours. After the extraction period expired, the sample was taken from the bath and mixed for fifteen seconds by shaking the contents.
- 4. The sample was then allowed to cool to room temperature.
- 5. Three milliliters of the sample extract solution was drawn into an ionically clean syringe and injected into the ion chromatograph for analysis per IPC-TM 650, method 2.3.28.1. No additional dilutions were performed on the sample.

Ion Chromatography Data:

Table #1: Halide Chromatography Data for Solder Paste

Sample	Sample	Extract Mass Dilution		Chloride	Bromide	
Number	Description	N Vol (mL) (g) Factor		Factor	CI	Br
1119-026-01	NC258-T754	50.00	1.001	N/A	0.05	7.56

Table #1: All values reported in the table are in parts per million. ND = N one Detected. N/A = N ot Applicable. All bag blank contaminants were subtracted from the sample amounts. No additional dilutions were performed on the solder paste sample.

Calculations:

IPC-TM-650, method 2.3.28.1 - Per Section 5.5.2: Solder paste

5.5.2.1: Determine weight of each halide ion in the flux

Equation:

Weight of halide ion (g) in solder paste = [ppm from IC (μ g/mL)] x [Dilution factor (if needed)] x [Volume of extract solution (mL)] x [10⁻⁶]

Note: No dilution factor was used for the sample.

For the Solder Paste Sample

CI ion (g) = $[0.05 \,\mu\text{g/mL}] \times [50.00 \,\text{mL}] \times [10^{-6}] = 2.50 \times 10^{-6} \text{g}$

Project: 1119-026 Page 3 of 4 Issued: September 25, 2010

Br ion (g) = $[7.56 \,\mu\text{g/mL}] \times [50.00 \,\text{mL}] \times [10^{-6}] = \frac{3.78 \times 10^{-4} \,\text{g}}{10^{-6}}$

5.5.2.2: Determine weight of flux solids in the flux

Equation:

Weight of flux solids (g) in solder paste flux = [Weight of solder paste sample (g)] x [% Flux in solder paste / 100] x [% solids in paste flux / 100]

% Flux

100% total flux material – 88.5% metal load = 11.5% flux

For the Solder Paste Sample

Weight flux solids (g) = $[1.001 \text{ g paste}] \times [11.5 / 100] \times [100.0\% / 100] = 0.115 \text{ g}$

5.5.2.3: Calculate the percentage of each halide ion in the non-volatile solid portion of the liquid flux

Equation:

% Halide ion in solid portion of solder paste flux = {[Weight halide ion (g) in solder paste] / [Weight of flux solids (g) in solder paste]}{100}

For the Solder Paste Sample

CI ion = $[2.50 \times 10^{-6} \text{ g} / 0.115 \text{ g}][100] = \underline{0.002\%}$

Br ion = $[3.78 \times 10^{-4} \text{ g} / 0.115 \text{ g}][100] = \underline{0.33\%}$

Table #2: Halide Ion Content Results

Paste	lon	Weight Halide ion (g)	Weight flux solids (g)	% Halide Ion Solder Paste Flux
NC258-T754	CI	2.50x10-6	0.115	0.002
	Br	3.78x10-4	0.115	0.33

Project: 1119-026 Page 4 of 4 Issued: September 25, 2010